_______________________________________________________________________ DATOS:
Edición: Mir 1991 Spanish PDF 1107 Páginas
Archivo: 158 MB
_______________________________________________________________________ DESCRIPCION:
En estos libros se examinan una serie de problemas relacionados con el análisis de las funciones matemáticas, sucesiones, polinomios, integrales y del cálculo. Los autores aspiraban a hacer la exposición más sistemática y subrayar los teoremas y conceptos más importantes. En el Tomo III, el libro contiene una serie de cuestiones adicionales que juegan un papel de importancia en diferentes apartados de las matemáticas modernas y de la física (teoría de la medida y la integral de Lebesgue, teoría de los espacios de Hilbert y de operadores, críticas de valor, a P. S. Modénov y Ya. M. Zhileikin quienes han prestado los materiales concernientes a la teoría del campo y a los métodos aproximados de cálculos de las integrales múltiples. V. Ilín, E. Pozniak.
_______________________________________________________________________
CONTENIDO:Tomo I
Indice
Cap. 1. Nociones preliminares sobre conceptos fundamentales del análisis matemático
Cap. 2. Teoría de los números reales
Cap. 3. Límite de una sucesión
Cap. 4. Concepto de función. Valor límite de la función. Continuidad
Cap. 5. Fundamentos del cálculo diferencial
Cap. 6. Integral indefinida
Cap. 7. Números complejos. Algebra de polinomios. Integración en funciones elementales
Cap. 8. Teoremas fundamentales de las funciones continuas y diferenciables
Cap. 9. Investigación geométrica de la gráfica de una función.
Tomo II
Indice
Cap. 1. Integral definida
Cap. 2. Aplicaciones geométricas y físicas de la integral definida
Cap. 3. Métodos aprox. de cálculo de las raices de ecuaciones y de las integrales definidas
Cap. 4. Teoría de las series numéricas
Cap. 5. Funciones de varias variables
Cap. 6. Teoría de las funciones implícitas y sus aplicaciones
Cap. 7. Algunas aplicaciones geométricas del cálculo diferencial
Tomo III
Indice
Cap. 1. Sucesiones y series funcionales
Cap. 2 Integrales dobles e integrales n - múltiples
Cap. 3. Integrales Impropias
Cap. 4. Integrales curvilíneas
Cap. 5. Integrales de superficie
Cap. 6. Operaciones principales de la Teoría del Campo
Cap. 7. Fórmulas de Creen, Stokes. Ostrogradski
Cap. 8. Medida e integral de Lebesgue
Cap. 9. Integrales dependientes de los parámetros
Cap. 10. Series e integral de Fourier
Cap. 11. Espacio de Hilbert
Cap. 12. Fundamentos de la teoría de las curvas y superficie
_______________________________________________________________________ DESCARGA:
Parte 1(Rapidshare):
Parte 2(Rapidshare):
_______________________________________________________________________